Pei-Yong Wang
Professor
313-577-2479
313-577-5786 (fax)
1111 FAB
Department
Pei-Yong Wang
Research interest(s)/area of expertise
Partial differential equations and harmonic analysis
Research
I have been working on the mathematical theories of degenerate and singular elliptic or parabolic partial differential equations and the free boundary problems. This study includes the existence, uniqueness, regularity and symmetric properties of a solution of a partial differential equation or a free boundary problem. These problems originate in physics and engineering and have seen application in science, engineering and economics.
Education
Ph.D. 1999, New York UniversitySelected publications
- Wang, P., Regularity of free boundaries of two-phase problems for fully nonlinear elliptic equations of second order. Part 1: Lipschitz free boundaries are C1,α, Comm. Pure Appl. Math., Vol. LIII (2000), 799-810
- Lu, G. and Wang, P., Inhomogeneous Infinity Laplace Equation, Advances in Mathematics, Vol. 217, 4 (2008), 1838-1868
- Lu, G. and Wang, P., On the uniqueness of a solution of a two-phase free boundary problem, Journal of Functional Analysis, Vol.258(2010), 2817-2833
- Caffarelli, L.A. and Wang, P., A bifurcation phenomenon in a singularly perturbed one-phase free boundary problem of phase transition, Calculus of Variations and Partial Differential Equations, Vol 54, No.4 (2015), 3517-3529