Mary Kay Pflum

Mary Kay Pflum

Professor

313-577-1515

313-577-8822 (fax)

pflum@chem.wayne.edu

323 Chemistry

Websites

chem.wayne.edu/pflumgroup

Mary Kay Pflum

Dr. Pflum received a B.A. degree from Carleton College working with Jerry Mohrig in physical organic chemistry. In Ph.D. training at Yale Univeristy with Alanna Schepartz, she worked on several bioorganic projects focusing on phosphoproteins and transcription factors. In an NIH post-doctoral position at Harvard University with Stuart Schreiber, she worked on chemical biology and cell biology projects focusing on histone deacetylase proteins. Dr. Pflum joined the faculty at Wayne State University in 2001 with a research program at the interface of Chemistry and Biology focusing on two cancer-related proteins - kinase and histone deacetylase enzymes.

Research Interest/Area of Expertise

  • Protein post-translational modification, histone deacetylase proteins, chemical genetics, medicinal chemistry

Research

 Research in the Pflum group integrates organic synthesis, biochemistry, and cell biology to understand the molecular basis of disease. For many years, we have been particularly interested in two proteins associated with cancer formation- kinase and histone deacetylase enzymes. Our goal is to use a chemical approach to characterize the role of these proteins in cancers, which will lead to identification of novel drugs targeting these proteins and biomarkers to diagnose illness.

Our group focuses on two main projects:

I. Kinase Enzymes
Kinases catalyze protein phosphorylation, which is a ubiquitous post-translational modification that can profoundly influence protein function. However, identifying the position of phosphorylated amino acids and the physiological significance of phosphorylation has been challenging due to the paucity of available tools. We are interested in developing chemical methods to characterize kinase-catalyzed post-translational modifications.

We recently reported use of ATP analogs to label, visualize, and enrich phosphorylated proteins from protein or peptide mixtures. The method relies upon ATP analogs with a gamma-phosphate tag that can be used as a cosubstrate by kinases to label recombinant proteins and cell lysates (Figure 1). Using this strategy, we have established kinase-catalyzed biotinylation, dansylation, and crosslinking (see Senevirathne, et al. 2016). We are currently focused on developing new methods to probe kinase-substrate pairs based on kinase-catalyzed labeling (see Embogama and Pflum, 2017 and Dedigama-Arachchige and Pflum, 2017), and applying these novel labeling methods to characterize phosphoproteins in cell lysates and live cells (see Fouda and Pflum, 2015). These studies will pioneer advances in cell signaling research by coupling cell biology and biochemistry with novel synthetic ATP analogs.


II. Histone Deacetylase Enzymes
Histone deacetylase (HDAC) proteins catalyze deacetylation of acetyllysine residues on protein substrates and are key players in cancer progression and have emerged recently as targets for anti-cancer drugs. While HDAC activity has been intensely studied, two pressing needs still remain in the HDAC research field. First, HDAC substrate selectivities are poorly understood. The oldest and most well studied protein substrates are histone proteins. However, recently many, many acetylated proteins have been identified in cells, which strongly suggests that HDAC enzymes deacetylate substrates beyond histones. To facilitate identification of HDAC substrates and reveal novel biology associated with HDAC proteins, we have developed "substrate trapping mutants" (see Figures 2A and 2B). Using substrate trapping mutants, we have identified two new HDAC1 substrates- Eg5/KIF11 and LSD1 (see Nalawansha et al, 2017 and Nalawansha and Pflum, 2017). These new substrates have revealed novels roles of HDAC1 is cell division and gene expression, which are unregulated in cancer.

The second significant challenge in the HDAC field is the lack of selective inhibitor compounds targeting only one or two HDAC proteins among the eleven HDAC family members. The second goal is this project is to identify inhibitors that selectively target only one or only a few HDAC enzymes. Towards this second goal, we have synthesized a variety of small molecule HDAC inhibitors and evaluated their potencies (see Bieliauskas et al, 2016). Our recent results have identified dual HDAC6/8-selective inhibitors based on the FDA-approved drug Vorinostat (see Figure 2C, Negmeldin et al. 2017, and Negmeldin and Pflum, 2017). Taken together, through inhibitor development and substrate identification, the HDAC projects in the Pflum lab will deepen our understanding of cancer onset and progression, while also assisting in the development of next generation cancer therapeutics.

 

 

Education – Degrees, Licenses, Certifications

  • B.A. Carleton College, 1992
  • Ph.D. Yale University, 1999
  • NIH Postdoctoral Fellow, Harvard University, 1999-2001

Awards and Grants

  •  Positions and Honors
    1996 Pre-doctoral Fellowship, American Chemical Society, Yale University
    1996 Pre-doctoral Fellowship, Lucille E. Dox Fellowship, Yale University
    1999 Post-doctoral Fellowship, National Institute of Health, Harvard University
    2002 Research Innovation Award, Research Corporation, Wayne State University
    2007 Teaching award, College of Liberal Arts and Science, Wayne State University
    2008 President’s Award for Excellence in Teaching, Wayne State University
    2008 Scientific Member, Barbara Ann Karmanos Cancer Institute
    2010 Career Development Chair, Wayne State University
    2012 Co-chair of the Bioorganic Chemistry Gordon Research Conference, Andover, NH
    2014 Permanent Member of the NIH SBCB study section, National Institutes of Health

    Research Funding
    National Institutes of Health (GM079529 and GM067657)
    National Science Foundation (CHE-130649)

Selected Publications

 

HDAC Inhibitor-Induced Mitotic Arrest Is Mediated by Eg5/KIF11 Acetylation. Nalawansha DA, Gomes ID, Wambua MK, Pflum MKH. Cell Chem Biol. 2017, 24, 481-492.e5.
https://doi.org/10.1016/j.chembiol.2017.03.008

LSD1 Substrate Binding and Gene Expression Are Affected by HDAC1-Mediated Deacetylation. 
Nalawansha DA and Pflum MK.
 ACS Chem Biol. 2017, 12, 254-264.
http://doi.org/10.1021/acschembio.6b00776.

K-BILDS: A Kinase Substrate Discovery Tool.
 Embogama DM and Pflum MK.
 Chembiochem. 2017, 18, 136-141.
http://doi.org/10.1002/cbic.201600

The structural requirements of histone deacetylase inhibitors: SAHA analogs modified at the C5 position display dual HDAC6/8 selectivity. Negmeldin AT, Pflum MKH. Bioorg Med Chem Lett. 2017, 27, 3254-3258.
https://doi.org/10.1016/j.bmcl.2017.06.033

Structural Requirements of HDAC Inhibitors: SAHA Analogues Modified at the C2 Position Display HDAC6/8 Selectivity. Negmeldin AT, Padige G, Bieliauskas AV, Pflum MK. ACS Med Chem Lett. 2017, 8, 281-286. doi: https://doi.org/10.1021/acsmedchemlett.6b00124.

K-CLASP: A Tool to Identify Phosphosite Specific Kinases and Interacting Proteins.
 Dedigama-Arachchige PM and Pflum MK.
 ACS Chem Biol. 2016, 16, 3251-3255.
http://doi.org/10.1021/acschembio.6b00289

Structural Requirements of Histone Deacetylase Inhibitors: SAHA Analogs Modified on the Hydroxamic Acid. 
Bieliauskas AV, Weerasinghe SV, Negmeldin AT, Pflum MK.
 Arch Pharm (Weinheim). 2016, 349, 373-82.
http://doi.org/10.1002/ardp.201500472

The generality of kinase-catalyzed biotinylation.
 Senevirathne C, Embogama DM, Anthony TA, Fouda AE, Pflum MK. 
Bioorg Med Chem. 2016, 24, 12-9.
http://doi:10.1016/j.bmc.2015.11.029.

A Cell Permeable ATP analog for Kinase-Catalyzed Biotinylation. Ahmed E. Fouda and Mary Kay H. Pflum, Angewandte Chemie International Edition, 2015, 54, 9618-21
http://dx.doi.org/10.1002/anie.201503041
 

 

Currently Teaching

  • CHM 1240-001 Organic Chemistry I, 4 credit hours F2017
    CHM 1240-501 Organic Chemistry I, 4 credit hours F2017

     

Courses taught

CHM 2230   Organic Chemistry II Laboratory, 1 credit hours   W2016