Christine S. Chow

Christine S. Chow

Professor

313-577-2594

cchow@wayne.edu

Chem 479

Websites

clasweb.clas.wayne.edu/chow

Christine S. Chow

Research Interest/Area of Expertise

  • Nucleic Acid, Bioorganic, and Bioinorganic Chemistry

Research

One of the long-term objectives of our research program is to understand the structural and functional roles of modified nucleosides in RNA. Although over 100 modifications and their locations in tRNAs and rRNA molecules have been identified, many questions still exist regarding the individual contributions of these modifications to RNA structure and function. Research in our group focuses on methodologies for the site-specific incorporation of modified nucleosides into RNA. The effects of modified bases on the structure and stability of ribonucleotide fragments (model RNAs) are being examined by a variety of biophysical methods. To better understand RNA dynamics and the influence of modified nucleotides, a major focus of our work is helix 69 of 23S rRNA, which contains three pseudouridine residues in its loop region. Ribosome-probing experiments are used to examine specific base accessibilities and individual nucleotide conformations that are influenced by the presence of modifications. We are also using inorganic molecules to examine nucleic acid structure. In particular, we employ platinum(II) complexes to probe the structures of large ribosomal RNA systems.

Studies in our laboratory have also focused on the characterization of drug-RNA interactions in solution using fluorescence spectroscopy and other biophysical techniques, such as mass spectrometry. RNAs that can interact antibiotics, metal ions, peptides, and small organic molecules have been synthesized. Fluorescence spectroscopy and electrospray ionization mass spectrometry methods are used to screen for improved RNA-binding ligands that can be further developed into potential antibiotics.

Our long-term goal is to develop new anti-infectives that address the issue of antibiotic resistance. Interactions of drug leads with their rRNA targets are characterized using a variety of biophysical methods to identify compounds with the highest binding affinity and specificity. 


 

 

 

 

 

Education – Degrees, Licenses, Certifications

  • A. B., Bowdoin College, 1987
  • M. A., Columbia University, 1988
  • Ph. D., Caltech, 1992
  • NIH Postdoctoral Fellow, M.I.T., 1992-94

Awards and Grants

  • NIH 4DP7OD018427-04, Wayne State University - Broadening Experiences in Scientific Training (BEST) (PI: Mathur), 2013–2018

Selected Publications

Jiang, J.; Aduri, R.; Chow, C. S.; SantaLucia, J., Jr. "Structure Modulation of Helix 69 from Escherichia coli 23S Ribosomal RNA by Pseudouridylations", Nucleic Acids Res. 2014, 42, 3971–3981.

Rijal, K.; Bao, X.; Chow, C. S. "Amino Acid-Linked Platinum(II) Analogues Have Altered Specificity for RNA Compared to Cisplatin", Chem. Comm. 2014, 50, 3918–3920.

Jiang, J.; Kharel, D. N.; Chow, C. S. "Modulation of Conformational Changes in Helix 69 Mutants by Pseudouridine Modifications", Biophys. Chem. 2015, 200-201, 48–55.

Dedduwa-Mudalige, G. N. P.; Chow, C. S. "Cisplatin Targeting of Bacterial Ribosomal RNA Hairpins",  Int. J. Mol. Sci. 2015, 16, 21392–21409.

He, C. C.; Kimutai, B.; Bao, X.; Hamlow, L.; Zhu, Y.; Strobehn, S. F.; Gao, J.; Berden, G.; Oomens, J.; Chow, C. S.; Rodgers, M. T. "Evaluation of Hybrid Theoretical Approaches for Structural Determination of a Glycine-Linked Cisplatin Derivative via IRMPD Action Spectroscopy", J. Phys. Chem A. 2015, 119, 10980–10987.

Jiang, J.; Seo, H.; Chow, C. S. "Post-transcriptional Modifications Modulate rRNA Structure and Ligand Interactions", Accts Chem. Res. 2016, 49, 893–901.

Dremann, D. N.; Chow, C. S. "The Development of Peptide Ligands that Target Helix 69 rRNA of Bacterial Ribosomes", Bioorg. Med. Chem. 2016, 24, 4486–4491.
 

 

 

 

 

 

Currently Teaching

  • CHM 3000 Metals in Biology, 3 credit hours, F2017

    CHM 6610 Biological Chemistry Laboratory, 3 credit hours, F2017

     

Courses taught

CHM 6610 Biological Chemistry Laboratory, 3 credit hours, W2017

CHM 6620/7620 Metabolism: Pathways and Regulation, 3 credit hours, F2016

CHM 6270/7270 Bioorganic Chemistry and Drug Design, 3 credit hours, F2016

CHM 8840 Seminar in Biochemistry, 1 credit hour, F2016